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Abstract
Soft materials exhibit significant nonlinear geometric deformations and stress–strain relationships under external forces.
This paper explores weakly nonlinear elasticity theories, including Landau’s and Murnaghan’s formulations, advancing
understanding beyond linear elasticity. We establish connections between these methods and extend strain-energy
functions to the third and fourth orders in power of ε, where ε = √

H · H and 0 < ε ≤ 1, and H is the perturbation
to the deformation gradient tensor F = I + H. Furthermore, we address simplified strain-energy functions applicable to
incompressible materials. Through this work, we contribute to a comprehensive understanding of nonlinear elasticity and
its relationship to weakly nonlinear elasticity, facilitating the study of moderate deformations in soft material behavior
and its practical applications.
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1. Introduction
Soft materials, such as biological tissues and gels, often undergo significant geometric deformations when
subjected to external forces [1]. Unlike hard materials, which typically only experience small deformations, the
stress–strain relationship in soft materials is best described using nonlinear elasticity theory due to the large
deformations involved [2–5]. Linear elasticity theory is often insufficient to accurately represent the stress–
strain relationship in these materials, necessitating the use of nonlinear finite-deformation theory and precise
constitutive modeling [6].
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For homogeneous isotropic hyperelastic materials, finite-deformation analysis commonly relies on the strain-
energy function represented by the three principal invariants of the strain tensor [6]. The stress–strain relation-
ship can be obtained by solving the partial derivatives of the strain-energy function. Under the assumption of
incompressibility, the strain energy can be further simplified as a function of two principal invariants. Analyti-
cal solutions for large deformation problems of incompressible materials in simple structures have been found
based on finite deformation theory [7]. However, obtaining analytical solutions that account for large deforma-
tions becomes difficult for complex problems like nonlinear contact [8] and post-buckling analysis [9]. Linear
elastic approximations also fail to meet the precision requirements. Instead, weakly nonlinear theory provides
an effective approach in such cases [10].

Weakly nonlinear elasticity theory, particularly the formulation proposed by Landau et al. [11] and Mur-
naghan [12], represents a significant advance in nonlinear elasticity theory. The use of the strain-energy function
in polynomial form allows for the precise determination of elastic moduli through curve fitting of experimental
data using standard linear regression techniques [10, 13].

Landau’s [11] approach, based on the Landau invariants of the Cauchy–Green strain tensor, with terms up to
the third and/or higher orders of the strain-energy functions, includes both material and geometric nonlinearity
[10]. It finds applications in material science, geophysics, acoustics, and other fields, accurately predicting the
mechanical response of materials under realistic loading conditions [14–16].

Murnaghan’s [12] framework, which expresses the strain-energy function as a triply-infinite power series
in the principal invariants of the Cauchy–Green strain tensor, is also widely used. This approach has shown
the ability to solve simple problems involving compressible materials and specific cross-sectional shapes of
prisms under incompressible conditions [7]. It approximates the strain-energy function to any desired order
in the power-series expansion, utilizing the symmetric functions of principal invariants. In addition, under the
assumption of small deformations, the higher-order Murnaghan model extends the classical linear elastic theory
into the weakly nonlinear region, providing a robust method. By considering the superposition of displacements
of higher orders and substituting them into the motion equations and boundary conditions according to the
corresponding orders, the Murnaghan model [12] demonstrates the linearization of the nonlinear problem by
neglecting higher-order terms and simplifying solutions to quasi-nonlinear problems [17, 18].

This article aims to organize the definitions of different strains, invariants, and strain-energy functions in
these two different weakly nonlinear elastic theories and the various forms of strain-energy functions and
material parameters in non-linear elastic theory to establish their relationships. We expand the strain-energy
functions in the weakly nonlinear theory up to the third and fourth orders, corresponding to the second-order
and third-order elasticity theories. In addition, we consider the simplified strain-energy functions and stress–
strain relationships of materials under incompressible conditions, as many soft materials can be assumed to be
incompressible.

2. Connections among different strain invariants
In the context of finite deformation, let us consider an elastic body undergoing a finite displacement field u
from the reference configuration to the current configuration. The deformation gradient tensor F is defined by
F = I + H, where H is the displacement gradient tensor, defined as H = Grad, u. For weakly nonlinear theory,
we shall assume that H is the perturbation to the deformation gradient tensor and is small, i.e., ε = √

H · H and
0 < ε ≤ 1. Henceforth, the left and right Cauchy–Green strain tensors are

b = FFT = I + H + HT + HHT = I + e + α,

C = FTF = I + H + HT + HTH = I + e + γ ,
(1)

where we separate e = H + HT, α = HHT, and γ = HTH, so that e is the first-order term, i.e., e = O(ε) and
α = γ = O(ε2) are of second-order terms. The Green–Lagrange strain tensor E is then given by

E = 1

2
(C − I) = 1

2
(e + γ ) . (2)

In linear elasticity, providing that the displacement gradient tensor H is small, and ignoring the second-order
terms of H, we obtain the infinitesimal strain tensor

E∗ = 1

2

(
H + HT

) = 1

2
e. (3)
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The strain-energy function of an ideal isotropic elastic material, capable of undergoing finite deformation,
can generally be expressed in terms of three independent scalar invariants of the strain tensor. For a general
second-order tensor M, the principal invariants are defined by the equation

M3 − IMM2 + IIM M − IIIM I = 0, (4)

where the invariants of the tensor M are

IM = tr(M), IIM = 1

2

(
tr(M)2 − tr

(
M2
))

, IIIM = detM. (5)

On the other hand, the scalar invariants of the tensor M can be defined in Landau’s form by

Ī1 = tr(M), Ī2 = tr
(
M2
)

, Ī3 = tr
(
M3
)

, (6)

where Ī1, Ī2, and Ī3 are, respectively, the first-, second-, and third-order terms of M.
Some commonly used invariants and the relationships between them are

IC = tr(C), IIC = 1

2

(
tr(C)2 − tr

(
C2
))

, IIIC = detC,

Ī1 = tr(E), Ī2 = tr
(
E2
)

, Ī3 = tr
(
E3
)

,

J1 = tr(2E), J2 = 1

2

(
tr(2E)2 − tr

(
4E2

))
, J3 = det(2E),

J̃1 = tr(E), J̃2 = 1

2

(
tr(E)2 − tr

(
E2
))

, J̃3 = detE.

(7)

Among them, IC , IIC , and IIIC are principal invariants of the right Cauchy–Green strain tensor C, which are
often used for constructing the strain-energy function for hyperelastic material in fully nonlinear elasticity.
When the material is incompressible (IIIC = 1), the strain-energy function can be simplified to depend solely
on IC and IIC . In addition, the Landau invariants Ī1, Ī2, and Ī3 represent the first-, second-, and third-order terms
of the Green–Lagrange strain tensor E. Similarly, the principal invariants of the Green–Lagrange strain tensor
E, namely J̃1, J̃2, and J̃3, also represent its first-, second-, and third-order terms. These are known as Murnaghan
invariants. However, it is more convenient to use another set of Murnaghan invariants, namely J1, J2, and J3,
which are the principal invariants of 2E to simplify the derivation of the stress–strain relationships.

Given the often utilization of both fully nonlinear and weakly nonlinear elasticity theories in the derivation
of nonlinear deformation problems, it becomes imperative to comprehensively outline the interconnections
between the invariants and the strain-energy functions they engender.

2.1. Connections between IC, IIC , IIIC and Ī1, Ī2, Ī3

In this subsection, we shall demonstrate the connections between the principal invariants, IC , IIC , and IIIC , of
the right Cauchy–Green strain tensor C and the Landau invariants, Ī1, Ī2, Ī3, of the Green–Lagrange strain tensor
E. First, recalling the equations (2) and (7), we have

trC = tr(I + 2E) = 2Ī1 + 3,

tr
(
C2
) = tr

(
4E2 + 4E + I

) = 4Ī2 + 4Ī1 + 3,

tr
(
C3
) = tr

(
8E3 + 12E2 + 6E + I

) = 8Ī3 + 12Ī2 + 6Ī1 + 3.

(8)

Then, the first and second principal invariants of the right Cauchy–Green strain tensor C can be expressed as

IC = trC = 2Ī1 + 3,

IIC = 1

2

(
tr(C)2 − tr

(
C2
)) = 3 + 4Ī1 + 2Ī2

1 − 2Ī2.
(9)

Next, by tracing equation (4), we obtain

tr
(
C3
)− ICtr

(
C2
)+ IICtrC − 3IIIC = 0. (10)
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Using this equation, the third principal invariant of the right Cauchy–Green strain tensor C can be expressed as

IIIC = detC = 1

3

(
tr
(
C3
)− ICtr

(
C2
)+ IICtrC

)
= 1 + 2Ī1 + 2Ī2

1 − 2Ī2 + 4

3
Ī3
1 − 4Ī1 Ī2 + 8

3
Ī3.

(11)

Inversely, from equations (9) and (11), we can express the Landau invariants Ī1, Ī2, and Ī3 in terms of the
principal invariants IC , IIC , and IIIC as

Ī1 = 1

2
(−3 + IC), Ī2 = 1

4

(
3 − 2IC + I2

C − 2IIC

)
,

Ī3 = 1

8

(
24 − 24IC + 12I2

C − 2I3
C − 12IIC + 3ICIIC + 3IIIC

)
.

(12)

2.2. Connections between IC, IIC , IIIC , J1, J2, J3, and J̃1, J̃2, J̃3

As the two sets of definitions of the Murnaghan invariants J1, J2, J3, and J̃1, J̃2, J̃3 in equation (7) are com-
monly used, we shall first show connections between them and then demonstrate relationships with the principal
invariants of the right Cauchy–Green strain tensor C.

From equation (7), we obtain

J1 = tr(2E) = 2trE = 2J̃1,

J2 = 1

2

(
tr(2E)2 − tr

(
4E2

)) = 1

2

(
4J̃2

1 − 4tr
(
E2
)) = 4J̃2,

J3 = det(2E) = 8detE = 8J̃3.

(13)

Furthermore, utilizing equations (2) and (7), we can deduce the following relationships between the Murnaghan
invariants IC , IIC , IIIC and J1, J2, J3:

IC = tr(I + 2E) = 3 + tr(2E) = 3 + J1,

IIC = 1

2

(
(J1 + 3)2 − tr

(
4E2 + 4E + I

)) = 3 + 2J1 + J2,

IIIC = det(I + 2E) = 1 + J1 + J2 + J3.

(14)

Inversely, we have
J1 = IC − 3, J2 = 3 − 2IC + IIC , J3 = IC − IIC + IIIC − 1. (15)

Moreover, considering the connections between Ji and J̃i(i = 1, 2, 3) in equation (13), we have

IC = 3 + 2J̃1, IIC = 3 + 4J̃1 + 4J̃2, IIIC = 1 + 2J̃1 + 4J̃2 + 8J̃3, (16)

and

J̃1 = 1

2
(IC − 3), J̃2 = 1

4
(3 − 2IC + IIC), J̃3 = 1

8
(IC − IIC + IIIC − 1). (17)

2.3. Connections among Ī1, Ī2, Ī3, J1, J2, J3, and J̃1, J̃2, J̃3

This subsection explores the connections between the Landau invariants Ī1, Ī2, Ī3 and the Murnaghan invariants
J1, J2, J3. Utilizing equations (9), (11), and (14), the following relationships can be established:

2Ī1 + 3 = 3 + J1,

3 + 4Ī1 + 2Ī2
1 − 2Ī2 = 3 + 2J1 + J2,

1 + 2Ī1 + 2Ī2
1 − 2Ī2 + 4

3
Ī3
1 − 4Ī1 Ī2 + 8

3
Ī3 = 1 + J1 + J2 + J3.

(18)
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Table 1. Transformations of some commonly used scalar invariants of strain tensors.

The principal invariants of C Landau invariants of
E

Murnaghan
invariants of 2E

The principal invariants of C
IC = tr(C)
IIC = 1

2 (tr(C)2 − tr(C2))
IIIC = detC

– IC = 3 + 2Ī1
IIC = 3 + 4Ī1 +
2Ī2

1 − 2Ī2

I I IC =1 + 2Ī1 + 2Ī2
1 − 2Ī2

+4

3
Ī3
1 − 4Ī2 Ī1 + 8

3
Ī3

IC = 3 + J1
IIC = 3 + 2J1 + J2
IIIC = 1+J1+J2+
J3

Landau invariants of E
Ī1 = tr(E)
Ī2 = tr(E2)
Ī3 = tr(E3)

Ī1 = 1
2 (−3 + IC)

Ī2 = 1
4 (3 − 2IC + I2

C − 2IIC)

Ī3 = 1

8
(24 − 24IC + 12I2

C − 2I3
C

−12IIC + 3ICIIC + 3IIIC)

– Ī1 = 1
2 J1

Ī2 = 1
4 (J2

1 − 2J2)

Ī3 = 1
8

(J3
1 − 3J1J2 + 3J3)

Murnaghan invariants of 2E
J1 = tr(2E)
J2 = 1

2 (tr(2E)2 − tr(4E2))
J3 = det(2E)

J1 = IC − 3
J2 = 3 − 2IC + IIC
J3 = IC − IIC + IIIC − 1

J1 = 2Ī1

J2 = 2
(

Ī2
1 − Ī2

)
J3 =
4
3

(
Ī3
1 − 3Ī1 Ī2 + 2Ī3

)
–

Solving these equations yields

Ī1 = 1

2
J1, Ī2 = 1

4

(
J2

1 − 2J2

)
, Ī3 = 1

8

(
J3

1 − 3J1J2 + 3J3

)
, (19)

and

J1 = 2Ī1, J2 = 2
(
Ī2
1 − Ī2

)
, J3 = 4

3

(
Ī3
1 − 3Ī1Ī2 + 2Ī3

)
. (20)

Analogously, according to equation (13), we can obtain the connections between the Landau invariants Īi(i =
1, 2, 3) and Murnaghan invariants J̃i(i = 1, 2, 3) as

Ī1 = J̃1, Ī2 = J̃2
1 − 2J̃2, Ī3 = J̃3

1 − 3J̃1J̃2 + 3J̃3. (21)

and

J̃1 = Ī1, J̃2 = 1

2

(
Ī2
1 − Ī2

)
, J̃3 = 1

6

(
Ī3
1 + 3Ī1 Ī2 + 2Ī3

)
. (22)

Finally, the summary of transformations for the principal invariants, IC , IIC , and IIIC , of the right Cauchy–
Green strain tensor C, the Landau invariants Ī1, Ī2, Ī3 of the Green–Lagrange strain tensor E, and the Murnaghan
invariants J1, J2, J3 of the strain tensor 2E can be found in Table 1.

3. Weakly nonlinear elasticity for isotropic compressible materials
In fully nonlinear elasticity, the strain-energy function of the isotropic compressible material W is commonly
expressed in terms of the three principal invariants (IC , IIC , and IIIC) of the right Cauchy–Green strain tensor
C. The Cauchy stress tensor t can be represented as

t = 2

J
(

b
∂W

∂IC
− IIICb−1 ∂W

∂IIC
+
(

IIIC
∂W

∂IIIC
+ IIC

∂W

∂IIC

)
I

)
, (23)

where b is the left Cauchy–Green tensor. J = detF and J = 1 for incompressible materials. Here, IC − 3,
IIC − 3, and IIIC − 1 are all of O(ε). For weakly nonlinear elasticity, instead of using the principal invariants
of C to construct the strain-energy function and stress tensor, it is more convenient to employ the Landau and
Murnaghan invariants for constructing the strain-energy function up to a certain order of expansion.
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3.1. Second-order elasticity

3.1.1. Strain-energy functions. In second-order elasticity, we require the terms of O(ε2) in the stress and strain
tensors. Consequently, the strain-energy function needs to include the third-order terms of O(ε3). In terms of
Murnaghan invariants, the strain-energy function to third-order terms is

WM = a1J2 + a2J2
1 + a3J1J2 + a4J3

1 + a5J3 + O(ε4) (24)

where a1, ..., a5 are O(ε) material constants. W2M = a1J2 + a2J2
1 = O(ε2) and W3M = a3J1J2 + a4J3

1 + a5J3 =
O(ε3) are the second- and the third-order terms, respectively. Alternatively, third-order energy function can be
expressed in terms of Landau invariants as:

WL = λ

2
Ī2
1 + μĪ2 + Ā

3
Ī3 + B̄Ī1Ī2 + C̄

3
Ī3
1 + O(ε4), (25)

where μ and λ are the linear Lamé coefficients, and Ā, B̄, and C̄ are O(ε) elastic material constants. W2L =
λ
2 Ī2

1 + μĪ2 is the second-order term and W3L = Ā
3 Ī3 + B̄Ī1Ī2 + C̄

3 Ī3
1 is the third-order term.

Referring to the connections between Murnaghan invariants and Landau invariants in equation (20), the
third-order strain-energy function in Murnaghan expansion can be rewritten as

WM = (2a1 + 4a2)Ī2
1 − 2a1 Ī2 + 8a5

3
Ī3 − 4(a3 + a5)Ī1Ī2 +

(
4a3 + 8a4 + 4a5

3

)
Ī3
1 + O(ε4). (26)

Thus, we can obtain the following relationships among the material constants:

λ = 4a1 + 8a2, μ = −2a1,

Ā = 8a5, B̄ = −4(a3 + a5), C̄ = (12a3 + 24a4 + 4a5).
(27)

Similarly, referring to the connections between Landau invariants and Murnaghan invariants in equation (19),
we can rewrite the third-order strain-energy function in Landau expansion as:

WL = −μ

2
J2 +

(
λ

8
+ μ

4

)
J2

1 −
(

Ā

8
+ B̄

4

)
J1J2 +

(
Ā

24
+ B̄

8
+ C̄

24

)
J3

1 + Ā

8
J3 + O(ε4). (28)

This leads to

a1 = −μ

2
, a2 = λ

8
+ μ

4
,

a3 = −
(

Ā

8
+ B̄

4

)
, a4 = Ā

24
+ B̄

8
+ C̄

24
, a5 = Ā

8
.

(29)

3.1.2. Stress–strain relationships. Second-order elasticity requires the stress and strain tensors to be expanded to
O(ε2). According to equation (23), the Cauchy stress tensor involves the three principal invariants of the right
Cauchy–Green strain tensor (IC , IIC , and IIIC), as well as the partial derivatives of the strain-energy function
W with respect to them, the left Cauchy–Green strain tensor b, and its inverse tensor b−1. For isotropic elastic
solids, the principal invariants of the left Cauchy–Green strain tensor b are equal to those of the right Cauchy–
Green strain tensor C, i.e., Ib = IC , IIb = IIC , and IIIb = IIIC .
From equation (1) and defining

e = tre, α = trα, K = (det e)e−1, (30)

the first principal invariant Ib can be expressed as

Ib = trb = 3 + e + α, (31)
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and

b2 = (I + e + α)2 = I + 2e + 2α + e2 + O
(
ε3
)

. (32)

By tracing this equation and using equation (30), we obtain

tr
(
b2
) = 3 + 2e + α + e2 − 2K + O

(
ε3
)

, (33)

where K = trK = 1
2

(
(tre)2 − tr

(
e2
))

. Thus, the second principal invariant IIb is given as

IIb = 1

2

(
(trb)2 − tr

(
b2
)) = 3 + 2e + 2α + K + O(ε3), (34)

and the third principal invariant IIIb is

IIIb = detb = det(I + e + α) = 1 + j1 + j2 + j3, (35)

where j1 = tr(e + α), j2 = 1
2

(
j2
1 − tr

(
(e + α)2

))
, j3 = det(e + α). Referring to equation (30) and expanding to

second-order terms, we have

j1 = e + α + O
(
ε3
)

, j2 = K + O
(
ε3
)

, j3 = 0 + O
(
ε3
)

. (36)

Thus, the third principal invariant IIIb can be expanded as

IIIb = 1 + e + α + K + O
(
ε3
)

(37)

In addition, using the Cayley–Hamilton theorem and equations (31), (32), and (34), we have

IIICb−1 = IIIbb−1 = b2 − Ibb + IIbI

= (e − e − 1)e − α + (1 + e + α + K)I + O
(
ε3
)

.
(38)

Analogously, from equation (30), we have

K = (dete)e−1 = e2 − Iee + I IeI, (39)

where Ie = tre = e, IIe = 1
2

(
(tre)2 − tr

(
e2
)) = K. This equation gives

e2 = K + ee − KI. (40)

Hence, equation (38) can be finally rewritten as

I I ICb−1 = K − e − α + (1 + e + α)I + O
(
ε3
)

. (41)

Next, following the connections between the Murnaghan invariants and the principal invariants in equation
(17), we have

J1 = IC − 3 = e + α,

J2 = 3 − 2IC + IIC = K + O
(
ε3
)

,

J3 = IC − IIC + IIIC − 1 = O
(
ε3
)

.

(42)

In addition, using the chain rule, we can replace the derivatives of the strain-energy function W with respect to
IC , IIC , and IIIC by

∂WM

∂IC
= ∂WM

∂J1
− 2

∂WM

∂J2
+ ∂WM

∂J3
,

∂WM

∂IIC
= ∂WM

∂J2
− ∂WM

∂J3
,

∂WM

∂IIIC
= ∂WM

∂J3
.

(43)
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With respect to the third-order Murnaghan strain-energy function in equation (24), we have

∂WM

∂IC
= (a5 − 2a1) + 2(a2 − a3)J1 + a3J2 + 3a4J2

1 + O
(
ε3
)

,

∂WM

∂IIC
= (a1 − a5) + a3J1 + O

(
ε2
)

,
∂WM

∂IIIC
= a5 + O (ε) .

(44)

Moreover, recalling that J= det(F) = III1/2
C and using equation (37), we have

2

J = 2

det(F)
= 2 − e + 3

4
e2 − K − α + O

(
ε3
)

. (45)

Finally, substituting equations (31), (34), (37), (41), (44), and (45) into equation (23) and ignoring the higher-
order terms, we can derive the second-order expansion of the Cauchy stress tensor

t = [−2a1e + (2a1 + 4a2)eI] + [(a1 + 4a2 − 2a3)ee − (2a1 − 2a5)K − 2a1α

+ ((2a1 + 2a3)K + (2a1 + 4a2)α − (a1 + 2a2 − 2a3 − 6a4)e2
)

I
]+ O

(
ε3
)

.
(46)

From this, we extract the first-order linear elastic term

t1 = − 2a1e + (2a1 + 4a2)eI, (47)

and the second-order term

t2 =(a1 + 4a2 − 2a3)ee − (2a1 − 2a5)K − 2a1α

+ (
(2a1 + 2a3)K + (2a1 + 4a2)α − (a1 + 2a2 − 2a3 − 6a4)e2

)
I.

(48)

3.2. Third-order elasticity

3.2.1. Strain-energy functions. The third-order elasticity requires expanding the stress and strain tensors up to third-
order smallness O

(
ε3
)
, as well as the strain-energy function up to fourth-order smallness O

(
ε4
)
. The fourth-

order energy function can be expressed using the Murnaghan invariants by

WM = W2M + W3M + W4M + O
(
ε5
)

, (49)

where W4M = a6J1J3 + a7J2
1 J2 + a8J2

2 + a9J4
1 and a6, a7, a8, and a9 are O (ε) material constants.

In addition, the fourth-order energy function can be expressed in terms of the Landau invariants as

WL = W2L + W3L + W4L + O
(
ε5
)

, (50)

where W4L = ĒĪ1Ī3 + F̄Ī2
1 Ī2 + ḠĪ2

2 + H̄ Ī4
1 μ and Ē, F̄, Ḡ, and H̄ are O (ε) material constants.

Referring to the connections between the Murnaghan invariants and Landau invariants in equation (20), we can
rewrite the fourth-order strain-energy term in the Murnaghan expansion as

W4M = 16a6

3
Ī1Ī3 − 8(a6 + a7 + a8)Ī2

1 Ī2 + 4a8 Ī2
2 +

(
8a6

3
+ 8a7 + 4a8 + 16a9

)
Ī4
1 . (51)

Thus, the relationships between the material constants are

Ē = 16a6

3
, F̄ = −8(a6 + a7 + a8), Ḡ = 4a8, H̄ = 8a6

3
+ 8a7 + 4a8 + 16a9. (52)

Similarly, referring to the connections between the Landau invariants and Murnaghan invariants in equation
(19), we can rewrite the fourth-order strain-energy term in the Landau expansion as follows:

W4L = 3Ē

16
J1J3 − 1

16
(3Ē + 2F̄ + 4Ḡ)J2

1 J2 + Ḡ

4
J2

2 + 1

16
(Ē + F̄ + Ḡ + H̄)J4

1 , (53)

which gives the relationship among the material constants

a6 = 3Ē

16
, a7 = − 1

16
(3Ē + 2F̄ + 4Ḡ), a8 = Ḡ

4
, a9 = 1

16
(Ē + F̄ + Ḡ + H̄). (54)
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3.2.2. Stress–strain relationships. Here, our aim is to expand all terms in equation (23) up to the third-order terms
and obtain the third-order expansion of the Cauchy stress tensor, represented by t = t1 + t2 + t3 +O

(
ε4
)
, where

t3 denotes the third-order term. By expanding the square of the left Cauchy–Green strain tensor b, we have

b2 = I + 2e + 2α + e2 + 2β + O
(
ε4
)

, (55)

and its trace

tr
(
b2
) = 3 + 2e + 2α + e2 − 2K + 2β + O

(
ε4
)

, (56)

where β = eα and β = tr(eα). Therefore, the second principal invariant IIb can be obtained by

IIb = 1

2

(
(trb)2 − tr

(
b2
)) = 3 + 2e + 2α + K + αe − β + O

(
ε4
)

. (57)

Next, referring to equations (30) and (35) and expand to the third-order terms, we find

j1 = e + α, j2 = K + eα − β + O
(
ε4
)

, j3 = L + O
(
ε4
)

, (58)

where L = dete. Therefore, we can yield

IIIb = 1 + e + α + K + eα − β + L + O
(
ε4
)

. (59)

Moreover, according to the Cayley–Hamilton theorem, we have

IIICb−1 = K − e − α + (1 + e + α + αe − β)I

+ 2β − eα − αe + O
(
ε4
)

.
(60)

By following the connections between the Murnaghan invariants and principal invariants in equation (17) and
expanding to third-order terms, we find

J1 = IC − 3 = e + α

J2 = 3 − 2IC + IIC = K + αe − β + O
(
ε4
)

J3 = IC − IIC + IIIC − 1 = L + O
(
ε4
) (61)

In addition, using the chain rule, we can replace the derivatives of the strain-energy function WM with respect
to IC , IIC , and IIIC by

∂WM

∂IC
= ∂WM

∂J1
− 2

∂WM

∂J2
+ ∂WM

∂J3
,

∂WM

∂IIC
= ∂WM

∂J2
− ∂WM

∂J3
,

∂WM

∂IIIC
= ∂WM

∂J3
.

(62)

In the case of the fourth-order Murnaghan strain-energy function in equation (49), we have

∂WM

∂IC
= (a5 − 2a1) + (2a2 − 2a3 + a6)J1 + (a3 − 4a8)J2

+(3a4 − 2a7)J2
1 + 4a9J3

1 + 2a7J1J2 + a6J3 + O
(
ε4
)

,

∂WM

∂IIC
= (a1 − a5) + (a3 − a6)J1 + a7J2

1 + 2a8J2 + O
(
ε3
)

, (63)

∂WM

∂IIIC
= a5 + a6J1 + O

(
ε2
)

.

Moreover, recalling that J= det(F) = III1/2
C and using equation (59), we have

2

J = 2 − e + 3

4
e2 − K − α − 5

8
e3 + 3

2
eK + 1

2
eα + β − L + O

(
ε4
)

. (64)
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Finally, substituting the equations (31), (57), (59), (60), (64), and (64) into equation (23) and ignoring the
higher-order terms, we can obtain the Cauchy stress up to the third-order terms to be

t = t1 + t2 + t3 + O
(
ε4
)

(65)

in which the third-order term is

t3 =
[(

−3

4
a1 − 2a2 + a3 + 6a4 − 2a7

)
e2 + (a1 + 2a3 − 4a8)K

+ (3a1 + 4a2 − 2a3 − 2a5)α] e + (a1 − 2a3 − a5 + 2a6)eK
+ (3a1 + 4a2 − 2a3 − 2a5)eα + (4a5 − 4a1)β

+
((

3

4
a1 + 3

2
a2 − a3 − 3a4 + 2a7 + 8a9

)
e3 + (−2a1 − 2a2 + a3 + 4a7 + 4a8)eK

+(−2a1 − 4a2 + 6a3 + 12a4 + 2a5)eα + (2a5 + 2a6)L − (2a3 + 2a5)β) I.

(66)

4. Weekly nonlinear elasticity for isotropic incompressible materials
Most soft biological materials are assumed to be incompressible, so that IIIC = 1, and then the strain-energy
function W is just IC and IIC and the Cauchy stress tensor is given by

t = −pI + 2
∂W

∂IC
b − 2

∂W

∂IIC
b−1, (67)

where p is the Lagrange multiplier that needs to be determined by a boundary condition. Given IIIC = 1, then

Ī1 = −Ī2
1 + Ī2 + 2Ī1 Ī2 − 2

3
Ī3
1 − 4

3
Ī3, and J1 = −J2 − J3. (68)

In this section, we present the weakly nonlinear expansion of energy functions for commonly used incompress-
ible isotropic hyperelastic solids in the Landau and Murnaghan forms. These include the neo-Hookean model
WNH, the two-parameter Mooney–Rivlin model WMR2, and the five-parameter Mooney–Rivlin model WMR5,
which are given by

WNH = C10(IC − 3),

WMR2 = C10(IC − 3) + C01(IIC − 3),

WMR5 = C10(IC − 3) + C01(IIC − 3) + C20(IC − 3)2

+ C11(IC − 3)(IIC − 3) + C02(IIC − 3)2.

(69)

4.1. Second-order elasticity

4.1.1. Strain-energy functions. For the incompressible materials, the equation (68) indicates that Ī1 = 1
2 (e + α) and

J1 = e + α are second-order O
(
ε2
)

quantities. In addition, recalling that the strain-energy function should be
expanded up to the third-order smallness for the second-order elasticity theory, the incompressibility condition
in terms of the Landau invariants can be written as

Ī1 = Ī2 − 4

3
Ī3 + O

(
ε4
)

. (70)

Thus, we have

IC − 3 = 2Ī1 = 2Ī2 − 8

3
Ī3 + O

(
ε4
)

,

IIC − 3 = 4Ī1 + 2Ī2
1 − 2Ī2 = 2Ī2 − 16

3
Ī3 + O

(
ε4
)

.
(71)
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Substituting this equation in equation (69), we can obtain the expansion form of the energy functions as follows:

WNH =2C10Ī2 − 8

3
C10Ī3 + O

(
ε4
)

,

WMR2 =2(C10 + C01)Ī2 − 8

3
(C10 + 2C01)Ī3 + O

(
ε4
)

,

WMR5 =2(C10 + C01)Ī2 − 8

3
(C10 + 2C01)Ī3 + O

(
ε4
)

.

(72)

Following the third-order incompressible isotropic elasticity analysis by Destrade and Ogden [19], the weakly
nonlinear expansion of the strain-energy functions in terms of Landau invariants up to third-order is

WL = μĪ2 + Ā

3
Ī3 + O

(
ε4
)

, (73)

From this, we can obtain the following connections between the material constants of the incompressible neo-
Hookean, two-parameter Mooney–Rivlin and five-parameter Mooney–Rivlin solids

WNH : μ = 2C10, Ā = −8C10,

WMR2 : μ = 2(C10 + C01), Ā = −8(C10 + 2C01),

WMR5 : μ = 2(C10 + C01), Ā = −8(C10 + 2C01).

(74)

Next, recalling the connections between IC , IIC , IIIC and J1, J2, J3 in equation (14), the incompressibility
condition in equation (68) can be expressed in terms of the Murnaghan invariants as follows:

IC − 3 = J1 = −J2 − J3,
IIC − 3 = 2J1 + J2 = −J2 − 2J3.

(75)

Substituting equation (75) into equation (69) and neglecting the terms of O
(
ε4
)
, we can rewrite the strain-energy

functions as
WNH = − C10J2 − C10J3,

WMR2 = − (C10 + C01)J2 − (C10 + 2C01)J3,

WMR5 = − (C10 + C01)J2 − (C10 + 2C01)J3 + O
(
ε4
)

.

(76)

According to equations (73) and (29), the strain-energy functions in terms of Murnaghan invariants becomes

WM = a1J2 + a5J3 + O
(
ε4
)
. (77)

Thus, for the incompressible neo-Hookean, two-parameter Mooney–Rivlin and five-parameter Mooney–Rivlin
models, we have the following connections between the material constants:

WNH : a1 = −C10, a5 = −C10,

WMR2 : a1 = −(C10 + C01), a5 = −(C10 + 2C01),
WMR5 : a1 = −(C10 + C01), a5 = −(C10 + 2C01).

(78)

4.1.2. Stress–strain relationships. To simplify the calculation, we use the third-order Murnaghan form strain-energy
function to derive the second-order Cauchy stress tensor. First, using the chain rule, we can rewrite the
derivatives of the strain-energy function W with respect to IC , IIC , and IIIC as

∂WM

∂IC
= −2

∂WM

∂J2
+ ∂WM

∂J3
= −2a1 + a5,

∂WM

∂IIC
= ∂WM

∂J2
− ∂WM

∂J3
= a1 − a5.

(79)
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According to equation (37), the incompressibility condition IIIC = 1 gives

e = −α − K + O
(
ε3
)

, (80)

which indicates that e is the second-order quantity. Hence, equation (41) can be reduced to

b−1 = K − e − α + (1 − K)I + O
(
ε3
)

. (81)

Therefore, substituting the equations (79) and (81) into equation (67) and ignoring the higher-order terms, we
have the second-order Cauchy stress tensor

t = −2a1e − (2a1 − 2a5)K − 2a1α + (−6a1 + 4a5 + (2a1 − 2a5)K − p)I + O
(
ε3
)

. (82)

Specifically, according to the equation (78), for incompressible neo-Hookean solid, the Cauchy stress tensor is
given by

t = 2C10e + 2C10α + (2C10 − p)I + O
(
ε3
)

. (83)

For incompressible two-parameter Mooney–Rivlin solid, the Cauchy stress tensor can be rewritten as

t = 2(C10 + C01)e + 2(C10 + C01)α − 2C01K + (2C10 − 2C01(1 − K) − p)I + O
(
ε3
)

, (84)

and for incompressible five-parameter Mooney–Rivlin solid, the Cauchy stress tensor can be expressed by

t = 2(C10 + C01)e + 2(C10 + C01)α − 2C01K + (2C10 − 2C01(1 − K) − p)I + O
(
ε3
)

. (85)

4.2. Third-order elasticity

4.2.1. Strain-energy functions. For the third-order elasticity, the strain-energy function is expanded to the fourth
order. The incompressibility condition, in terms of the Landau invariants, is

Ī1 = Ī2 − 4

3
Ī3 + Ī2

2 + O
(
ε4
)

. (86)

Therefore,

IC − 3 = 2Ī1 = 2Ī2 − 8

3
Ī3 + 2Ī2

2 + O
(
ε4
)

IIC − 3 = 4Ī1 + 2Ī2
1 − 2Ī2 = 2Ī2 − 16

3
Ī3 + 6Ī2

2 + O
(
ε4
)

.
(87)

Hence, we can rewrite equation (69) as

WNH = 2C10Ī2 − 8

3
C10Ī3 + 2C10Ī2

2 + O
(
ε4
)

WMR2 = 2(C10 + C01)Ī2 − 8

3
(C10 + 2C01)Ī3 + 2(3C01 + C10)Ī2

2 + O
(
ε4
)

WMR5 = 2(C10 + C01)Ī2 − 8

3
(C10 + 2C01)Ī3

+ 2(3C01 + C10 + 2C20 + 2C11 + 2C02)Ī2
2 + O

(
ε4
)

.

(88)

Following Destrade and Ogden [19], the weakly nonlinear expansion of the strain-energy functions in terms
of Landau invariants to fourth order is

WL = μĪ2 + Ā

3
Ī3 + D̄Ī2

2 + O
(
ε5
)

, (89)
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where D̄ = λ/2 + B̄ + Ḡ. Hence, the corresponding material constants of the incompressible neo-Hookean,
two-parameter Mooney–Rivlin and five-parameter Mooney–Rivlin solids are as follows:

WNH : μ = 2C10, Ā = −8C10, D̄ = 2C10

WMR2 : μ = 2(C10 + C01), Ā = −8(C10 + 2C01), D̄ = 2(3C01 + C10)

WMR5 : μ = 2(C10 + C01), Ā = −8(C10 + 2C01),

D̄ = 2(3C01 + C10 + 2C20 + 2C11 + 2C02).

(90)

To represent the strain-energy function in terms of the Murnaghan expansion, we substitute equation (75)
into equation (69) to get

WNH = − C10J2 − C10J3,

WMR2 = − (C10 + C01)J2 − (C10 + 2C01)J3,

WMR5 = − (C10 + C01)J2 − (C10 + 2C01)J3 + (C20 + C11 + C02)J2
2 + O

(
ε4
)

.

(91)

Similarly, from equations (89) and (29), the expansion of the strain-energy functions in terms of Murnaghan
invariants is

WM = a1J2 + a5J3 + b1J2
2 + O

(
ε4
)

, (92)

where b1 is O (ε) material constant. Therefore, for the incompressible neo-Hookean, two-parameter Mooney–
Rivlin and five-parameter Mooney–Rivlin solids, we have the relationships between the material constants as

WNH : a1 = −C10, a5 = −C10, b1 = 0,
WMR2 : a1 = −(C10 + C01), a5 = −(C10 + 2C01), b1 = 0,

WMR5 : a1 = −(C10 + C01), a5 = −(C10 + 2C01), b1 = (C20 + C11 + C02).
(93)

4.2.2. Stress-strain relationships in third-order elasticity. Similarly, we use the fourth-order strain-energy function in
Murnaghan expansion to solve the third-order Cauchy stress tensor. Then, based on equation (92), we have

∂WM

∂IC
= −2

∂WM

∂J2
+ ∂WM

∂J3
= −2a1 + a5 − 4b1J2,

∂WM

∂IIC
= ∂WM

∂J2
− ∂WM

∂J3
= a1 − a5 + 2b1J2.

(94)

Referring to equation (59), the incompressibility condition IIIC = 1 gives

e = −α − K + β − L + O
(
ε4
)

(95)

With this equation, equation (60) can be rewritten as

b−1 = K − e − α + (1 − K − L)I − 2β + αe + O
(
ε4
)

. (96)

In addition, considering the e is O
(
ε2
)
, the J2 in equation (61) can be reduced to

J2 = K − β + O
(
ε4
)

. (97)

Therefore, substituting equations (94) and (96) into equation (67), we can derive the Cauchy stress tensor by

t = − 2a1e − (2a1 − 2a5)K − 2a1α − 4b1Ke + (2a1 − 2a5)αe − (4a1 − 4a5)β

+ (−6a1 + 4a5 + (2a1 − 2a5 − 12b1)K + (2a1 − 2a5)L − 12b1β − p)I.
(98)

Specifically, according to equation (93), for incompressible neo-Hookean solid, the Cauchy stress tensor is given
by

t = 2C10e + 2C10α + (2C10 − p)I + O
(
ε4
)

. (99)
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For incompressible two-parameter Mooney–Rivlin solid, the Cauchy stress tensor is given by

t = 2(C10 + C01)e + 2(C10 + C01)α − 2C01K + 2C01αe − 4C01β

+ (2C10 − 2C01(1 − K − L) − p)I + O
(
ε4
)

.
(100)

For incompressible five-parameter Mooney–Rivlin solid, the Cauchy stress tensor is given by

t = 2(C10 + C01)e + 2(C10 + C01)α − 2C01K
− 4(C20 + C11 + C02)Ke + 2C01αe − 4C01β

+ (2C10 − 2C01(1 − K − L) + 12(C20 + C11 + C02)(β − K) − p)I + O
(
ε4
)

.

(101)

5. Conclusion
The nonlinear elastic behavior of soft materials is of significant importance across many fields, including biol-
ogy, materials science, geophysics, and acoustics. In this paper, we have given new results for the expansion
of the strain-energy functions and Cauchy stress tensor to O

(
ε4
)

where ε = √
H · H and 0 < ε ≤ 1 for the

weakly nonlinear asymptotic expansion for small perturbations to the deformation gradient tensor F = I + H.
These theories provide us with powerful tools for understanding and predicting the mechanical response of soft
materials under complex loading conditions.

By examining distinct invariants of strain tensors, strain-energy functions, stress–strain relations, and trans-
formation relations of material parameters, we reveal the connections between different elastic theories and
expand the energy density function to third-order and fourth-order terms under the framework of weak non-
linear theory. Such efforts not only guide further research on the elastic behavior of soft materials but also
contribute to finding solutions for practical problems. It is worth highlighting that this paper also addresses
the strain-energy function and stress–strain relationship of soft materials under incompressible conditions. This
consideration facilitates the modeling and analysis of practical problems while providing a simplified approach
to tackling complex problems.
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